

Eyedea Recognition, s.r.o.

LPM SDK
Developer's Guide

010001010111100101100101011001000110010101100001001000000

101001001100101011000110110111101100111011011100110100101

110100011010010110111101101110010001010111100101100101011

001000110010101100001001000000101001001100101011000110110

111101100111011011100110100101110100011010010110111101101

110010001010111100101100101011001000110010101100001001000

000101001001100101011000110110111101100111011011100110100

101110100011010010110111101101110010001010111100101100101

011001000110010101100001001000000101001001100101011000110

110111101100111011011100110100101110100011010010110111101

ADVANCED COMPUTER VISION SOLUTIONS

Version 7.x

Copyright © 2022, Eyedea Recognition s.r.o.

All rights reserved

Eyedea Recognition s.r.o. is not liable for any damage or loss caused by incorrect or inaccurate results
or unauthorized use of the LPM SDK software.

Thales, the Thales logo, are trademarks and service marks of Thales S.A. and are registered in certain
countries. Sentinel, Sentinel Admin Control Center and Sentinel Hardware Key are registered
trademarks of Thales S.A..

NVIDIA, CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and/or
other countries.

Microsoft Windows, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1,
Windows 10, Windows 11 and Visual Studio are registered trademarks of Microsoft Corporation.

Contact:

 Address:
 Eyedea Recognition, s.r.o.
 Vyšehradská 320/49
 128 00, Prague 2
 Czech Republic

 web: http://www.eyedea.cz

 email: info@eyedea.cz

http://www.eyedea.cz/

Table of Contents 2

Eyedea Recognition, s.r.o.

Table of Contents
1 Product Description .. 3

1.1 Technical Details ... 3

1.2 System Workflow .. 5

2 Distribution Contents .. 6

3 Installation Guide .. 7

3.1 Pre-installation .. 7

3.2 Sentinel LDK Installation ... 7

3.3 Verification of Installation ... 8

3.4 Installation Failures ... 8

3.5 Managing Licenses .. 8

3.6 License Error Codes ... 9

4 Using TensorRT ... 10

4.1 About ... 10

4.2 edftrt_dat_encoder example .. 10

5 ERImage Application Interface .. 11

5.1 Image Format .. 11

5.2 Application Interface ... 14

6 SDK Application Interface ... 24

6.1 Enumerators ... 24

6.2 Structures .. 25

6.3 Functions ... 35

7 Examples ... 46

7.1 LPM SDK Example ... 46

8 Modules configuration files .. 53

8.1 General configuration file config.ini ... 53

8.2 Detector configuration file config-det.ini ... 57

9 LPM SDK Licensing .. 60

9.1 License Key Types.. 60

9.2 Licenses Overview ... 60

9.3 License Management .. 61

9.4 License Update .. 63

10 Third Party Software ... 65

Product Description 3

Eyedea Recognition, s.r.o.

1 Product Description
The LPM SDK is a cross-platform software library designed to provide a comfortable detection of car

license plates, ADR and Trash plates, and/or cars via bounding boxes, as well as optical character

recognition (OCR) of plates including plate type and physical size recognition from input images. It

defines an interface between the client's software and our state-of-the-art detection and recognition

modules. This special API allows simple module administrations and updates without any need for

changes to the client's software.

Each client receives an FTP account automatically created at Eyedea Recognition's server. This FTP

access serves as two-way communication between the client and Eyedea Recognition, s. r. o.. Clients

have an easy way to regularly upload data samples (or problematic data) to the FTP server,

and subsequently receive the corresponding updates of LPM modules. This systematic approach

makes it possible to verify result statistics and continuously adapt the LPM modules to the client's

specific data, ensuring the best possible performance.

1.1 Technical Details
 LPM SDK consists of two parts – base LPM engine and detection/recognition modules. Both are

cross-platform libraries with C interface. The

base LPM library is the only entry point, the user

never uses the detection/recognition LPM

modules directly. The module is loaded,

configured, and executed using the LPM library.

Each module can contain a detection routine, a

OCR routine, or both.

C native API

User’s Code
C/C++

LPM Library

LPM module LPM module LPM module

License plate
ADR plate

Multi-line license plates Trash plate Car bounding box

Product Description 4

Eyedea Recognition, s.r.o.

The LPM library provides the following APIs:

• C native API

• Python wrapper

• Java wrapper

Officially supported operating systems and platforms:

• Windows 7, 8, 8.1, 10 and 11

o 32-bit and 64-bit (Visual Studio 2019)

• Ubuntu 18.04 and higher

o 64-bit and aarch64

• Other platforms on request

Product Description 5

Eyedea Recognition, s.r.o.

1.2 System Workflow
The workflow of the LPM system consists of: image acquisition, plates or bounding boxes detection,

and OCR of detected plates (where applicable). The image acquisition is not part of this SDK and must

be solved separately.

The process starts with detection of license plates or ADR/Trash plates or car bounding boxes. Some

types of detections can then be supplied to the OCR stage which returns hypotheses of the plate text

and plate type, together with their confidences. There is no need to crop the detected plates for the

OCR stage, as the OCR stage takes the whole input image and the detection results.

1) Image acquisition
Not part of the SDK

2) License plate detection
Detection of plates positions in the input

image

3) License plate OCR
License plate text and type

recognition for detected plates

TEXT: 2A22222

TYPE: CZ

For every single input image:

SIZE: 520x110mm

Distribution Contents 6

Eyedea Recognition, s.r.o.

2 Distribution Contents
The following list is an excerpt from the LPM SDK directory structure, highlighting the most important
directories and files contained in the software distribution. A brief description of the items is provided.

• [LPM SDK] ... distribution main folder

o LPM .. LPM engine folder

▪ include ... LPM header files

▪ lib .. LPM libraries

o examples .. LPM examples folder

▪ example-anpr-implink ...example of implicit LPM library link

o images ... example images folder

o example-anpr-implink.vcxproj ……. Visual Studio project (only Windows version)

o example.cpp .. example source code

o Makefile .. example makefile (only Linux version)

o modules-v7 ... LPM modules

o x64 ... modules for appropriate architecture

▪ config_camera_view.ini ... camera view parameters file

o hasp .. license management software folder

o documentation .. SDK documentation folder

o wrappers …………………………………………………………………………………….……. SDK wrappers folder

o LICENSE.txt .. SDK license

o WhatsNew.txt ... file with release notes for each SDK version

o README.txt .. SDK readme file

Installation Guide 7

Eyedea Recognition, s.r.o.

3 Installation Guide
Installation of the software licensing daemon is the first step to start using the LPM SDK. The library

comes equipped with a standard third-party software licensing solution, Sentinel LDK by Thales.

This chapter will guide the client through installation on Windows and Linux. In the process, the client

will install a daemon service, Sentinel License Manager, that will automatically start upon system

startup. The application enables execution of the encrypted LPM SDK binaries, and management of

licenses using a web browser.

3.1 Pre-installation
Prior to the installation of the licensing software, all Sentinel Hardware Keys should be removed from

the target computer based on the recommendation from Thales. Leaving it connected during the

installation process might cause the Sentinel Hardware Key to not be properly recognized by the new

installation of Sentinel License Manager.

Sentinel License Manager does not support read only filesystems (on Windows, the functionality is

called Enhanced Write Filter).

3.2 Sentinel LDK Installation

3.2.1 Windows

Follow these steps to install Sentinel License Manager on a Windows machine:

• Start the command line cmd with Administrator privileges.

• Navigate to the [LPM_SDK]/hasp/ directory.

• Execute "dunst.bat" to uninstall any previous versions of Sentinel License Manager.

• Execute "dinst.bat" to install Sentinel License Manager.

3.2.2 Linux

Follow these steps to install Sentinel License Manager on a Linux machine:

• Start the command line and navigate to the [LPM_SDK]/hasp/ directory.

• On 64-bit Linux distributions, install the 32-bit compatibility binaries.

o On Ubuntu 18.04 and higher:

▪ Execute "sudo apt-get install libc6:i386".

• Execute "sudo ./dunst" to uninstall any previous versions of Sentinel License Manager.

• Execute "sudo ./dinst" to install Sentinel License Manager.

(Without compatibility binaries, error “No such file or directory.” might appear.)

Installation Guide 8

Eyedea Recognition, s.r.o.

3.3 Verification of Installation
The software licensing daemon contains a web-based interface, which also allows the client to check

the available licenses. To verify that the installation of Sentinel License Manager was successfully

completed, the client should open a web browser at http://localhost:1947/_int_/devices.html.

The web page will be displayed, as seen in Illustration 1. The client must check that the trial licenses

were installed properly, and that the LPM SDK works on the machine, before ordering a full license. If

not, a problem may arise in the future when connecting the full license, resulting in a licensing failure

and additional costs to relicense the software to another machine. The web page lists all available

license keys. Under the "Products" link in the left pane all available products are listed.

3.4 Installation Failures
On Windows, antivirus application might break the installation of Sentinel License Manager.

If the installation failed, the client should disable the antivirus application and rerun the installation

of Sentinel License Manager. Even after successful installation, Sentinel License Manager might fail to

show up in the web browser. This can be solved by adding C:\Windows\system32\hasplms.exe to

the exception list of the antivirus. Port number 1947 must be also added to the exception list of the

Windows firewall, and also to the antivirus exception list, if it uses its own firewall.

3.5 Managing Licenses
It is of the utmost importance that the client understands the licensing schemes used in the Thales

Sentinel LDK software protection framework. Otherwise, unrepairable damage might be caused,

leading to additional costs to recover the already purchased licensing keys. The topic of license

management is fully covered in the Chapter 9.

Illustration 1: Sentinel License Manager screenshot.

http://localhost:1947/_int_/devices.html

Installation Guide 9

Eyedea Recognition, s.r.o.

3.6 License Error Codes
Error codes are outputted to the error stream of the application (typically stderr) using LPM SDK. The

user needs to check the error stream for error codes and fix the issues before deployment. The

following error codes and messages are the most common ones:

• H0007 – Sentinel HASP key not found. (No license for the LPM SDK on the PC.)

• H0033 – Unable to access Sentinel HASP Runtime Environment. (No License Manager found.)

• H0041 – Feature has expired. (The license on the PC has expired, consider renewal.)

The shared library of LPM SDK is encrypted for enhanced software protection. However, in case of

failure, the application does not terminate, but crashes after a few calls to the library; this is a security

measure against reverse engineering but may confuse the users. The client needs to make sure they

monitor the error codes outputted by the error stream to distinguish between programming errors

and licensing problems.

Using TensorRT 10

4 Using TensorRT

4.1 About
For Nvidia Jetson devices, when TensorRT GPU mode is set, the classifiers cannot be prepared in

advance and the folder [LPM-package]/modules-v*/aarch64/module-name/models does not

include prebuilt .dat files, but only their prototypes. Before running the software for the first time on

a specific Nvidia Jetson device type, the .dat files must be created using an utility called

edftrt_dat_encoder which should be located in the models directory. For example, if the client has

100 identical devices, they only need to follow this process once and then share the created .dat files

among the devices.

To run the edftrt_dat_encoder utility, the client needs to make sure the relevant Nvidia TensorRT

libraries are visible in the system, which can be checked using ldd utility as ‘ldd edftrt_dat_encoder’.

If not found, the Nvidia TensorRT need to be added to the library path using the following command,

‘export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/aarch64-linux-gnu/’.

The edftrt_dat_encoder utility must be executed when there is no other process utilizing resources

on the target device, otherwise the created .dat files will not give the best possible performance. By

default, the generated .dat files use float32 (FP32) computation mode. Using float16 (FP16)

computation mode can improve speed, but the effect on accuracy needs to be verified. Use

parameter ‘-h’ with the edftrt_dat_encoder utility to see all options, run the utility without any

options to use defaults. Conversion can take about 30 minutes depending on the specific device

type. Warnings might appear during the generation which can be ignored.

As of Nvidia TensorRT 8.2, there are still documented known issues in Nvidia TensorRT library that

can cause the generated .dat files to lose accuracy or completely misbehave. It is up to the customer

to verify the newly created .dat files give expected performance, for example by comparing with the

results of MMR SDK CPU version.

4.2 edftrt_dat_encoder example
Here is an example of a command that can be used from inside the models directory:

./edftrt_dat_encoder -p=./ -w=2048 -q=FP16

The -p argument denotes the path in which the utility will look for model prototypes (file triples with

extensions .dat.pre, .dat.net, .dat.post) to make optimized .dat files from, -q sets the quantization,

and -w sets the workspace size - see the TensorRT function IBuilderConfig::setMaxWorkspaceSize

for more information about this parameter.

ERImage Application Interface 11

5 ERImage Application Interface
This part contains information about the ways of digital image data storage and processing. The Image

format section describes how image data is stored in the memory from a theoretical point of view,

and the remaining parts cover the application interface used for image manipulation using the data

structure ERImage. Description of all available Enumerators and Functions is included.

5.1 Image Format
Digital image data can be persisted in many different forms. Since it is the main input of the processing,

it is very important to understand the form used for image storage and manipulation. Currently five

color models are supported in the ERImage image structure. The first is the BGR color model, the

second is the Gray color model, the third is the YCbCr color model, the fourth is the BGRA color model,

and the fifth is the YCbCr NV12 color model.

5.1.1 BGR

Three-channel model, which is derived from

RGB, and is supported by the ERImage is BGR

(B – blue, G – green, R – red).BGR

(B – blue, G – green, R – red) is a three-channel

model supported by ERImage; it is derived from

RGB.

The model stores image using three values per pixel, where the first value is the blue component, the

second value is the green component and the third is the red component. An image is saved row by

row in a 1D array. The following formulas show how to access the pixel color components B, G and R

in the 1D array data of the image with resolution width × height on coordinates (x, y). Coordinates x,

y and data array indices are 0-based.

𝐵(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎(3 ∗ (𝑤𝑖𝑑𝑡ℎ ∗ 𝑦 + 𝑥) + 0) B component at (x, y) coordinates

𝐺(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎(3 ∗ (𝑤𝑖𝑑𝑡ℎ ∗ 𝑦 + 𝑥) + 1) G component at (x, y) coordinates

𝑅(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎(3 ∗ (𝑤𝑖𝑑𝑡ℎ ∗ 𝑦 + 𝑥) + 2) R component at (x, y) coordinates

5.1.2 Gray

The one-channel model Gray is used for storing grayscale images, which are

composed of luminance values (Y - luminance). The model stores images using one

value per pixel, where the value is the luminance component. The image is saved

row by row in a 1D array. The following formula shows how to access the pixel

luminance component Y in the 1D array data of an image with resolution width ×

height at coordinates (x, y). Coordinates x, y and data array indices are 0-based.

𝑌(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎(𝑤𝑖𝑑𝑡ℎ ∗ 𝑦 + 𝑥) Y component at (x, y) coordinates

ERImage Application Interface 12

5.1.3 YCbCr I420

The three-plane model YCbCr I420 is used for storing color image, where the first plane contains

luminance (Y component, image brightness), the second plane contains the blue-difference chroma

component (Cb) and the third plane contains the red-difference chroma component (Cr). Cb and Cr

planes have half the resolution of the Y image plane. Four neighboring Y values belongs to one Cb and

one Cr value.

 Y00 Y01 Y02 Y03 Y04 Y05

 Y06 Y07 Y08 Y09 Y10 Y11

Y12 Y13 Y14 Y15 Y16 Y17

 Y18 Y19 Y20 Y21 Y22 Y23

 CB0 CB1 CB2 CB3 CB4 CB5

CR0 CR1 CR2 CR3 CR4 CR5

The image is saved per plane, where each plane is saved row by row in a 1D array. The following

formulas show how to access the pixel color components Y, Cb and Cr in the 1D array data of an image

with resolution width × height at coordinates (x, y). Coordinates x, y and data array indices are 0-

based. All divisions in the formulas are integer divisions.

 𝑌(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎(𝑤𝑖𝑑𝑡ℎ ∗ 𝑦 + 𝑥) Y component at (x, y) coordinates

 |𝑌| = 𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡 Size of the Y image plane

 𝐶𝑏(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎 (|𝑌| +
𝑦

2
∗

𝑤𝑖𝑑𝑡ℎ

2
+

𝑥

2
) Cb component at (x, y) coordinates

 |𝐶𝑏| = |𝐶𝑟| =
𝑤𝑖𝑑𝑡ℎ∗ℎ𝑒𝑖𝑔ℎ𝑡

4
 Size of the Cb and Cr image plane

 𝐶𝑟(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎 (|𝑌| + |𝐶𝑏| +
𝑦

2
∗

𝑤𝑖𝑑𝑡ℎ

2
+

𝑥

2
) Cr component at (x, y) coordinate

5.1.4 BGRA

BGRA (B – blue, G – green, R – red, A – alpha) is

a four-channel model supported by the

ERImage; it is derived from RGBA. The model

stores images using four values per pixel, where

the first value is the blue component, the second

value is the green component, the third is the red component and the fourth value is the alpha

component (transparency). An image is saved row by row in a 1D array. Following formulas show how

to access the pixel color components B, G, R and A in the 1D array data of an image with resolution

width × height at coordinates (x, y). Coordinates x, y and data array indices are 0-based.

ERImage Application Interface 13

𝐵(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎(4 ∗ (𝑤𝑖𝑑𝑡ℎ ∗ 𝑦 + 𝑥) + 0) B component at (x, y) coordinates

𝐺(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎(4 ∗ (𝑤𝑖𝑑𝑡ℎ ∗ 𝑦 + 𝑥) + 1) G component at (x, y) coordinates

𝑅(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎(4 ∗ (𝑤𝑖𝑑𝑡ℎ ∗ 𝑦 + 𝑥) + 2) R component at (x, y) coordinates

𝐴(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎(4 ∗ (𝑤𝑖𝑑𝑡ℎ ∗ 𝑦 + 𝑥) + 3) A component at (x, y) coordinates

5.1.5 YCbCr NV12

The two-plane model YCbCr NV12 is used for storing color images, where the first plane contains

luminance (Y component, image brightness) and the second plane contains interleaved blue-

difference chroma components (Cb) and red-difference chroma components (Cr). The Cb and Cr

planes have half the height and the same width as the Y image plane (because there are two

components). Four neighboring Y values belongs to one Cb and one Cr value.

 Y00 Y01 Y02 Y03 Y04 Y05

 Y06 Y07 Y08 Y09 Y10 Y11

 Y12 Y13 Y14 Y15 Y16 Y17

 Y18 Y19 Y20 Y21 Y22 Y23

 CB0 CR0 CB1 CR1 CB2 CR2

 CB3 CR3 CB4 CR4 CB5 CR5

The image is saved per plane, where each plane is saved row by row in a 1D array. The following

formulas show how to access the pixel color components Y, Cb and Cr in the 1D array data of the

image with resolution width × height at coordinates (x, y). Coordinates x, y and data array indices are

0-based. All divisions in the formulas are integer divisions.

 𝑌(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎(𝑤𝑖𝑑𝑡ℎ ∗ 𝑦 + 𝑥) Y component at (x, y) coordinates

 |𝑌| = 𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡 Size of the Y image plane

 𝐶𝑏(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎 (|𝑌| +
𝑦

2
∗ 𝑤𝑖𝑑𝑡ℎ +

𝑥

2
) Cb component at (x, y) coordinates

𝐶𝑟(𝑥, 𝑦) = 𝑑𝑎𝑡𝑎 (|𝑌| +
𝑦

2
∗ 𝑤𝑖𝑑𝑡ℎ +

𝑥

2
+ 1) Cr component at (x, y) coordinate

 |𝐶𝑏𝐶𝑟| = 𝑤𝑖𝑑𝑡ℎ ∗
ℎ𝑒𝑖𝑔ℎ𝑡

2
 Size of the CbCr image plane

ERImage Application Interface 14

5.2 Application Interface

5.2.1 Enumerators

This part defines the API enumerators which are related to the ERImage structure:

ERImageColorModel

ERImageColorModel is used to specify how the color channel values are saved in the image.

More information about the supported color models is in the section Image Format.

• ER_IMAGE_COLORMODEL_UNK = 0
o Default value - Unknown color model.

• ER_IMAGE_COLORMODEL_GRAY = 1
o One-channel grayscale color model. Image luminance values are saved row by row.

• ER_IMAGE_COLORMODEL_BGR = 2
o Three-channel BGR color model. Three values per pixel, stored row by row.

• ER_IMAGE_COLORMODEL_YCBCR420 = 3
o Three-plane YCbCr I420 color model. Luminance plane and two chroma planes are

stored separately, each row by row.

• ER_IMAGE_COLORMODEL_BGRA = 4
o Four-channel BGRA color model. Four values per pixel, stored row by row.

• ER_IMAGE_COLORMODEL_YCBCRNV12 = 5
o Two-plane YCbCr NV12 color model. Luminance plane and interleaved chroma plane

are stored separately each row by row.

ERImageDataType

ERImageDataType specifies the data type used for storing values of the image.

• ER_IMAGE_DATATYPE_UNK = 0
o Default value – unknown data type.

• ER_IMAGE_DATATYPE_UCHAR = 1
o All image values are saved as unsigned char.

• ER_IMAGE_DATATYPE_FLOAT = 2
o All image values are saved as float.

ERImage Application Interface 15

5.2.2 Structures

This part defines the API structure ERImage used for digital image data manipulation:

ERImage

ERImage represents the digital image data in a special structure designed to work with the SDK.

The structure contains the color model and the data type in the ERImageColorModel, and the

ERImageDataType enumerators, together with the parameters defining the size of the image and the

underlying data. Image data is saved in the data field row by row as a contiguous 1D array. For more

information see the section Image Format.

The structure contains the following fields:

• color_model
Image data color model represented by the enumerator ERImageColorModel.

• data_type
Image date type represented by the enumerator ERImageDataType.

• width
Width of the image in pixels.

• height
Height of the image in pixels.

• num_channels
Number of image channels. Zero for YCbCr color models.

• depth
Size of one image pixel in bytes. Zero for YcbCr color models.

• step
Number of bytes between each two beginnings of the row in the data array.

• size
Size of the image in bytes.

• data_size
Size of the allocated data in the structure.

• data
Array containing the image data.

• Row_data
Array containing pointers to the data array. Each element points to the beginning of
the specific image row in the data array.

• data_allocated
Value containing the flag whether the data field was allocated within the structure or on the
user’s side. (0 – allocated by user, 1 – allocated within the structure)

typedef struct {

 ERImageColorModel color_model;

 ERImageDataType data_type;

 unsigned int width;

 unsigned int height;

 unsigned int num_channels;

 unsigned int depth;

 unsigned int step;

 unsigned int size;

 unsigned int data_size;

 unsigned char* data;

 unsigned char** row_data;

 unsigned char data_allocated;

} ERImage;

ERImage Application Interface 16

5.2.3 Functions

This part defines the API functions which are designed to work with the ERImage structure:

• Allocation

erImageAllocate, erImageAllocateBlank,

erImageAllocateAndWrap and erImageCopy

• Properties

erImageGetDataTypeSize, erImageGetColorModelNumChannels,

erImageGetPixelDepth and erVersion

• IO Operations

erImageRead and erImageWrite

• Freeing

erImageFree

These functions are defined in the er_image.h file.

erImageAllocate

Allocates an ERImage structure.

Specification:

Inputs:

• image

Pointer to the ERImage structure instance to allocate.

• width

Width of the image to allocate.

• height

Height of the image to allocate.

• color_model

Color model of the image to allocate (see ERImageColorModel).

• data_type

Data type of the image to allocate (see ERImageDataType).

Returns:

• 0 – Image successfully allocated.

• other – Error during image allocation.

Description:

The function erImageAllocate() is used for ERImage structure data allocation. The input of the function

is the pointer to the ERImage structure instance, the width and height of the image to allocate, and

the color model and the data type specification.

Example:

int erImageAllocate(ERImage* image, unsigned int width, unsigned int height,

 ERImageColorModel color_model, ERImageDataType data_type);

ERImage* image = new ERImage();

// Allocate grayscale (1 channel) image with resolution 800x600 and 1 byte per channel

int res = erImageAllocate(image, 800, 600, ER_IMAGE_COLORMODEL_GRAY, ER_IMAGE_DATATYPE_UCHAR);

ERImage Application Interface 17

erImageAllocateBlank

Allocates an ERImage structure without allocating the internal data arrays.

Specification:

Inputs:

• image

Pointer to the ERImage structure instance to allocate.

• width

Width of the image to allocate.

• height

Height of the image to allocate.

• color_model

Color model of the image to allocate (see ERImageColorModel).

• data_type

Data type of the image to allocate (see ERImageDataType).

Returns:

• 0 – Image successfully allocated.

• other – Error during image allocation.

Description:

The function erImageAllocateBlank() is used for ERImage structure properties allocation, but without

the internal data array allocation. The input of the function is the pointer to the ERImage structure

instance, the width and height of the image to allocate, and the color model and the data type

specification.

Example:

int erImageAllocateBlank(ERImage* image, unsigned int width, unsigned int height,

 ERImageColorModel color_model, ERImageDataType data_type);

ERImage* image = new ERImage();

// Allocate blank BGR (3 channel) image with resolution 640x480 and 1 float per channel

int res = erImageAllocateBlank(image, 640, 480, ER_IMAGE_COLORMODEL_BGR, ER_IMAGE_DATATYPE_FLOAT);

// image->data == NULL, image->row_data == NULL and image->data_size == 0

IMPORTANT: Only the fields with image properties are allocated. Image data field is NULL,

row_data is NULL and field data_size is 0 after a successful function call.

ERImage Application Interface 18

erImageAllocateAndWrap

Allocates an ERImage structure and wraps it over the supplied image data.

Specification:

Inputs:

• image

Pointer to the ERImage structure instance to allocate.

• width

Width of the image to allocate.

• height

Height of the image to allocate.

• color_model

Color model of the image to allocate (see ERImageColorModel).

• data_type

Data type of the image to allocate (see ERImageDataType).

• data

Image data to wrap.

• step

Definition of the input data image row step.

(length of one image row in bytes in the input data)

Returns:

• 0 – Image successfully allocated.

• other – Error during image allocation.

Description:

The function erImageAllocateAndWrap() is used for ERImage structure data allocation and wrapping

of the supplied image data. The input of the function is the pointer to the ERImage structure instance,

the width and height of the image to allocate, the color model and the data type specification,

the pointer to the image data to wrap, and the step value which defines the size of the row in bytes.

Example:

int erImageAllocateAndWrap(ERImage* image, unsigned int width, unsigned int height,

 ERImageColorModel color_model, ERImageDataType data_type,

 unsigned char* data, unsigned int step);

unsigned char* data; // Image data to wrap

ERImage* image = new ERImage();

// Allocate grayscale (1 channel) image with resolution 800x600 and 1 byte per channel

// and wrap it over the image data supplied in the unsigned char* data array.

int res = erImageAllocateAndWrap(image, 800, 600, ER_IMAGE_COLORMODEL_GRAY,

 ER_IMAGE_DATATYPE_UCHAR, data, 800);

ERImage Application Interface 19

erImageCopy

Performs a deep copy of the ERImage structure instance.

Specification:

Inputs:

• image

Pointer to the ERImage structure instance to copy.

• image_copy

Pointer to the ERImage structure to copy the data into.

Returns:

• 0 – Image successfully copied.

• other – Error during image copying.

Description:

The function erImageCopy() is used for ERImage data copying to another instance of an ERImage

structure. The input is the pointer to the ERImage structure instance to copy and the output is

the pointer to the ERImage structure instance to copy the data into.

Example:

erImageGetDataTypeSize

Returns the size of the specific ERImageDataType in bytes.

Specification:

Inputs:

• data_type

ERImageDataType to get the size of.

Returns:

• data type size – Size of one channel image element in bytes.

• 0 – Unknown ERImageDataType used.

Description:

The function erImageGetDataTypeSize() is used to get the size in bytes of the specific

ERImageDataType when used for image allocation. The input is the ERImageDataType value. The

output is the value which represents the number of bytes needed for storing one channel value of

one pixel when a specific ERImageDataType is used.

int erImageCopy(const ERImage* image, ERImage* image_copy);

ERImage* image; // Image with source data

ERImage* image_copy = new ERImage(); // Destination image to copy the data into

// Deep copy of the image

int res = erImageCopy(image, image_copy);

unsigned int erImageGetDataTypeSize(ERImageDataType data_type);

IMPORTANT:

The allocation of image_copy is done within the function before the data copying.

ERImage Application Interface 20

Example:

erImageGetColorModelNumChannels

Returns the number of channels of the provided ERImageColorModel value.

Specification:

Inputs:

• color_model

ERImageColorModel to get the number of channels.
Returns:

• number of channels – Number of channels of the supplied color model.

• 0 – Unknown or YCbCr ERImageColorModel used.

Description:

The function erImageGetColorModelNumChannels() is used to get the number of channels of the

specific ERImageColorModel. The input is the ERImageColorModel value. The output is the valuewhich

represents the number color model channels used when storing the image with specific

ERImageColorModel.

Example:

erImageGetPixelDepth

Returns the size of a pixel in bytes for the supplied ERImageColorModel and ERImageDataType.

Specification:

Inputs:

• color_model

Input ERImageColorModel for pixel depth computation.

• data_type

Input ERImageDataType for pixel depth computation.

unsigned int erImageGetColorModelNumChannels(ERImageColorModel color_model);

unsigned int erImageGetPixelDepth(ERImageColorModel color_model,

 ERImageDataType data_type);

unsigned int sizeUC = erImageGetDataTypeSize(ER_IMAGE_DATATYPE_UCHAR);

// sizeUC == sizeof(unsigned char)

unsigned int sizeF = erImageGetDataTypeSize(ER_IMAGE_DATATYPE_FLOAT);

// sizeF == sizeof(float)

unsigned int numChannelsGRAY = erImageGetColorModelNumChannels(ER_IMAGE_COLORMODEL_GRAY);

// numChannelsGRAY == 1

unsigned int numChannelsBGR = erImageGetColorModelNumChannels(ER_IMAGE_COLORMODEL_BGR);

// numChannelsBGR == 3

unsigned int numPlanesYCBCR420 = erImageGetColorModelNumChannels(ER_IMAGE_COLORMODEL_YCBCR420);

// numPlanesYCBCR420 == 3

IMPORTANT: For the ER_IMAGE_COLORMODEL_YCBCR* color model, zero is returned.

ERImage Application Interface 21

Returns:

• depth of the pixel – Number of bytes needed to store one pixel
 using the specified color model and data type.

• 0 – Unknown ERImageColorModel and/or ERImageDataType used.

Description:

The function erImageGetPixelDepth() is used to get the size of one pixel in bytes for the combination

of ERImageColorModel and ERImageDataType. The input is the ERImageColorModel

and ERImageDataType values. The output is the value which represents the size of one pixel in bytes

when storing an image with the supplied ERImageColorModel and ERImageDataType.

Example:

erVersion

Returns the version of the ERImage structure and all related image utilities.

Specification:

Returns:

• version of the ERImage – String containing the version of the ERImage.

Description:

The function erVersion() is used to get the version of the ERImage structure and all related image

utilities. The function returns a string which contains the version number.

Example:

erImageRead

Reads the image from a file, decodes it, and loads it into the supplied ERImage structure instance.

Specification:

Inputs:

• image

Pointer to the ERImage structure instance to load the image into.

• filename

String containing the path to the image file to read.

Returns:

• 0 – Image successfully read.

• other – Error during image reading.

int erImageRead(ERImage* image, const char* filename);

IMPORTANT: For the ER_IMAGE_COLORMODEL_YCBCR* color model, zero is returned.

unsigned int dUCGray = erImageGetPixelDepth(ER_IMAGE_COLORMODEL_GRAY, ER_IMAGE_DATATYPE_UCHAR);

// dUCGray == 1

unsigned int dFBGR = erImageGetPixelDepth(ER_IMAGE_COLORMODEL_BGR, ER_IMAGE_DATATYPE_FLOAT);

// dFBGR == 3*sizeof(float)

const char* erVersion(void);

const char* version = erVersion();

std::cout << "ERImage version: " << version << std::endl;

ERImage Application Interface 22

Description:

The function erImageRead() is used to read and decode the image from the given file and load it into

the supplied ERImage structure instance. The input is the pointer to the ERImage instance and the

string containing the path to the image file to open.

Example:

erImageWrite

Encodes and writes the image from the ERImage structure to a file.

Specification:

Inputs:

• image

Pointer to the ERImage structure instance containing the image to write.

• filename

String containing the path to the image file to write.

Returns:

• 0 – Image successfully written.

• other – Error during image writing.

Description:

The function erImageWrite() is used to encode and write the image to the given file from the ERImage

structure instance. The input is the pointer to the ERImage instance and the string containing the path

to the image file to write. Output image format is automatically selected from the filename extension

with respect to the table of supported formats in the erImageRead chapter.

Example:

erImageFree

Frees the whole ERImage structure instance.

Specification:

void erImageFree(ERImage* image);

Supported image formats:
• JPEG files - *.jpeg, *.jpg, *.jpe

• JPEG 2000 files - *.jp2

• Portable Network Graphics - *.png

• Windows bitmaps - *.bmp, *.dib

• TIFF files - *.tiff, *.tif

• Portable image format - *.pbm, *.pgm, *.ppm *.pxm, *.pnm

char* filename = "./image.jpg"; // Image file path to read

ERImage* image = new ERImage(); // Initialize the ERImage

int res = erImageRead(image, filename); // Read the image

int erImageWrite(const ERImage* image, const char* filename);

char* filename = "./image.jpg"; // Image file path to write

ERImage* image; // ERImage containing the image to write

int res = erImageWrite(image, filename); // Write the image

ERImage Application Interface 23

Inputs:

• image

Pointer to the ERImage structure instance to delete.

Description:

The function erImageFree() is used to free the image data arrays contained in the ERImage structure

instance and also to set all the property fields to 0. The input is the pointer to the ERImage instance

you wish to free.

Example:

IMPORTANT: The function DOES NOT delete the ERImage instance pointer because the user

creates the pointer.

erImageAllocate(image, 800, 600, ER_IMAGE_COLORMODEL_GRAY, ER_IMAGE_DATATYPE_UCHAR);

// ...

erImageFree(image); // every field in the image structure is freed and set to NULL or 0

SDK Application Interface 24

6 SDK Application Interface
This chapter describes all parts of the SDK’s public application interface for the C/C++ programming

languages, including the defined Enumerators, Structures and all available Functions. It gives the

developer a detailed overview of the SDK and can help orientate the developer during SDK integration.

6.1 Enumerators
This section defines the API enumerators which are used in the LPM SDK:

LpmViewType

LpmViewType is used to specify the type of the camera view in the LpmCameraViewParams structure.

• LPM_VIEW_FRONTAL = 0
o Frontal images of cars (e. g. overhead installation on motorway gantries).

• LPM_VIEW_GENERIC = 1
o Generic images of cars (e. g. camera in a moving vehicle).

LpmDetectionLabel

LpmDetectionLabel is used to specify the type of detection input for the OCR function.

• LPM_LABEL_DEFAULT = 0
o Default label value for generic usage.

• LPM_LABEL_PERSON = 200
o Generic person object.

• LPM_LABEL_LP = 1000
o Generic license plate.

• LPM_LABEL_LP_EU_ONE_LINE = 1001
o European license plate.

• LPM_LABEL_LP_EU_MULTI_LINE = 1002
o European multiline license plate.

• LPM_LABEL_LP_I_FRONTAL_ONE_LINE = 1010
o Frontal Italy license plate.

• LPM_LABEL_LP_KZ_ONE_LINE = 1101
o Kazakhstan license plate.

• LPM_LABEL_LP _KZ_MULTI_LINE = 1102
o Multiline Kazakhstan license plate.

• LPM_LABEL_LP_NORTH_AMERICA = 1200
o North American license plate.

• LPM_LABEL_LP_ASIA_PACIFIC = 1300
o Asian license plate.

• LPM_LABEL_LP_MIDDLE_EAST = 1400
o Middle Eastern license plate.

• LPM_LABEL_ADR = 2000
o ADR (the European Agreement on International Carriage of Dangerous Goods by Road).

• LPM_LABEL_ADR_STRING = 2001
o ADR with text.

• LPM_LABEL_ADR_EMPTY = 2002
o Empty ADR.

• LPM_LABEL_TRASH = 2100
o Plate indicating trash load.

• LPM_LABEL_SPEED_LIMIT = 2200
o Speed limit sticker.

SDK Application Interface 25

• LPM_LABEL_VIGNETTE = 2300
o Vignette sticker.

• LPM_LABEL_VEHICLE = 3000
o General vehicle bounding box

• LPM_LABEL_VEHICLE_FRONT = 3001
o Frontal vehicle bouding box

• LPM_LABEL_VEHICLE_REAR = 3002
o Rear vehicle bounding box

• LPM_LABEL_VEHICLE_WINDSHIELD = 3010
o Vehicle windshield

6.2 Structures
This section covers information about the structures used in the SDK’s public application interface.

LpmModuleInfo, LpmPropertyFlags, LpmLicenseInfo, and LpmDateTime structures are used to get

information about available modules and their properties, LpmCameraViewParams contains

information about the camera view and is used during loading of modules, LpmBoundingBox is used

to store different bounding boxes coordinates, LpmDetResult, LpmDetection, LpmOcrHypothesis,

LpmLpDimensions and LpmTextLine store all data about detections or OCR results, LpmModuleConfig

is used for configuration of loaded modules. In version 7.3 and higher, structures

LpmDetResult_extension1, LpmDetection_extension1, and LpmModuleConfig_extension1 are used to

store additional information.

6.2.1 LpmModuleInfo

typedef struct {

 char name[LPM_MAX_STR_LEN];

 int id;

 char date[LPM_MAX_STR_LEN];

 char path[LPM_MAX_PATH_LEN];

 int version;

 int subversion;

 char det_type[LPM_MAX_STR_LEN];

 char obj_type[LPM_MAX_STR_LEN];

 char rcg_type[LPM_MAX_STR_LEN];

 char input_img_type[LPM_MAX_STR_LEN];

 double pxl_aspect_ratio;

 char lp_countries[LPM_MAX_STR_LEN];

 int lp_min_mean_max_width[3];

 int lp_min_mean_max_height[3];

 double lp_min_mean_max_rotation[3];

 int is_active;

 LpmPropertyFlags prop;

 LpmLicenseInfo *license_info;

} LpmModuleInfo;

SDK Application Interface 26

LpmModuleInfo represents all information you can get about a module by using the

lpmGetModuleInfo function. The structure contains the following fields:

• name

Full name of the module.

• id

Id of the module.

• date

Release date of the module in YYYY-mm-dd format.

• path

Full path to the module.

• version

Version number of the module.

• subversion

Subversion number of the module.

• det_type

Char array with the detector type (“frontal”, “generic”, “lfrontal”).

• obj_type

Char array with the type of the detected object (“license plates”, “adr plates”, ...).

• rcg_type

Char array with the recognition type (“ceu3”, “cz”, “adr”, “vcl”, ...).

• input_img_type

Input image type (e.g. “ERImage”).

• pxl_aspect_ratio

Desired pixels aspect ratio of input images.

• lp_countries

Supported LP countries codes returned as a comma separated list (e.g. "CZ,SK,A").

• lp_min_mean_max_width

Required LP width range.

• lp_min_mean_max_height

Required LP height range.

• lp_min_mean_max_rotation

Range of LP inplane rotation.

• is_active

Switch indicating whether the module is active or not.

• prop

Module properties in the LpmPropertyFlags structure. See header file lpm_types.h for more

information.

• license_info

Information about the license in the LpmLicenseInfo struct.

SDK Application Interface 27

6.2.2 LpmPropertyFlags

LpmPropertyFlags contains bit flags which describe the properties of the module, detector type, object

type, OCR type and recognition type. For specific values, see the lpm_types.h header file.

6.2.3 LpmLicenseInfo

LpmLicenseInfo contains information about the module license. The structure contains the following

fields:

• is_valid

Flag determining whether the license is valid or not. Zero means invalid, otherwise valid.

• expiration_date

License expiration date.

Note: the license is time-unlimited if all fields of LpmDateTime structure are zeros.

• is_using_counter

The counter is enabled if non-zero.

• executions_left

Number of module executions left. License is execution-unlimited if is_using_counter is zero.

6.2.4 LpmDateTime

LpmDateTime contains date and time fields. The structure contains the following fields:

• year
Year in 4-digit format.

• month
Month 1-12.
day_of_month
Day 1-31.

• hour
Hour 0-23.

• minute
Minute 0-59.

• second
Second 0-59.

typedef long long LpmPropertyFlags;

typedef struct {

 int is_valid;

 LpmDateTime expiration_date;

 int is_using_counter;

 unsigned long executions_left;

} LpmLicenseInfo;

typedef struct {

 unsigned int year;

 unsigned char month;

 unsigned char day_of_month;

 unsigned char hour;

 unsigned char minute;

 unsigned char second;

} LpmDateTime;

SDK Application Interface 28

6.2.5 LpmCameraViewParams

LpmCameraViewParams contains the of camera view parameters which are sent to every module

during module initialization using lpmLoadModule().

The structure contains the following fields:

• view_type

LpmViewType with values LPM_VIEW_FRONTAL or LPM_VIEW_GENERIC.

• min_horizontal_resolution

Minimal horizontal resolution in number of pixels per meter.

• max_horizontal_resolution

Maximal horizontal resolution in number of pixels per meter.

• density_ratio

Camera pixel density ratio which is defined as vertical pixel density / horizontal pixel density.

For standard cameras with square pixels, use value 1.

6.2.6 LpmModuleConfig

LpmModuleConfig contains the parameters for module initialization which are sent to every module

during module initialization using lpmLoadModule(). Note that in version 7.3 some fields were

deprecated, and a new extension structure was introduced.

The structure contains the following fields:

• compute_on_gpu

DEPRECATED specifies whether the computation should be done on a CPU=0 or a GPU=1.

• gpu_device_id

DEPRECATED GPU device identifier (used only when the computation is running on a GPU).

• extras

Extension of the configuration structure, must be NULL if not in use. Used in version 7.3 and

higher.

typedef struct {

 LpmViewType view_type;

 unsigned int min_horizontal_resolution;

 unsigned int max_horizontal_resolution;

 float density_ratio;

} LpmCameraViewParams;

typedef struct {

 int compute_on_gpu;

 int gpu_device_id;

 LpmModuleConfig_extension1 *extras;

} LpmModuleConfig;

IMPORTANT: Camera view parameters do NOT apply when using GPU capable detection modules

which work in a different way than previous modules.

SDK Application Interface 29

6.2.7 LpmModuleConfig_extension1

Extension of the configuration structure for module initialization used in version 7.3 and higher.

Structure contains the following fields:

• lpm_config_filename
Filename of the module's configuration file (config.ini by default if NULL).

• ocr_compute_on_gpu
Specifies if the OCR computation should be done on a CPU=0 or a GPU=1.

• ocr_gpu_device_id
GPU device identifier (used only when the computation is running on a GPU) for the OCR.

• ocr_num_threads
Specifies the number of threads available for the OCR (used only when the computation is
running on a CPU). Uses approximately 90% of logical processors if set to 0 or negative.

• disable_ocr
If set to 1, the OCR submodule will not be loaded and will not be available.

• det_config_filename
Filename of the detector's configuration file (config-det.ini by default if NULL).

• det_compute_on_gpu
Specifies if the computation should be done on a CPU=0 or a GPU=1 for the detector.

• det_gpu_device_id
GPU device identifier (used only when the computation of the detector is running on a GPU).

• det_num_threads
Specifies number of threads available for the detector (used only when the computation is
running on a CPU). Use approximately 90% of logical processors if set to 0 or negative.

• disable_det
If set to 1, the detection submodule will not be loaded and will not be available.

• extras
General void pointer allocated for future use, must be NULL if not in use.

typedef struct {

 const char *lpm_config_filename;

 int ocr_compute_on_gpu;

 int ocr_gpu_device_id;

 int ocr_num_threads;

 int disable_ocr;

 const char *det_config_filename;

 int det_compute_on_gpu;

 int det_gpu_device_id;

 int det_num_threads;

 int disable_det;

 void *extras;

} LpmModuleConfig_extension1;

IMPORTANT: Be careful when setting the number of threads by ocr_num_threads or

det_num_threads, as setting a high value (same as number of logical processors) can lead to poor

performance because LPM threads may block other processes, including the system processes

needed by LPM.

SDK Application Interface 30

6.2.8 LpmBoundingBox

LpmBoundingBox represents bounding box coordinates of the detection area. Coordinates are zero

based from the top left corner of image.

The structure contains the following fields:

6.2.9 LpmDetResult

LpmDetResult structure holds an array of detections.

The structure contains the following fields:

• lpm_id

ID of the the used LPM module.

• lpm_idx

Index of the used LPM module.

• num_detections

Number of detections.

• detections

Array of detections.

• top_left_col
Top left column.

• top_left_row
Top left row.

• top_right_col
Top right column.

• top_right_row
Top right row.

• bot_left_col
Bottom left column.

• bot_left_row
Bottom left row.

• bot_right_col
Bottom right column.

• bot_right_row
Bottom right row.

typedef struct {

 float top_left_col;

 float top_left_row;

 float top_right_col;

 float top_right_row;

 float bot_left_col;

 float bot_left_row;

 float bot_right_col;

 float bot_right_row;

} LpmBoundingBox;

typedef struct {

 int lpm_id;

 int lpm_idx;

 int num_detections;

 LpmDetection *detections;

 LpmDetection_extension1 *extras;

} LpmDetResult;

IMPORTANT: With new GPU capable detection models, size and aspect ratio of a bounding box

can affect detection performance. Be careful when using very wide or very high bounding boxes.

SDK Application Interface 31

• extras

Additional details for detections, NULL if not in use. Used in version 7.3 and higher.

6.2.10 LpmDetResult_extension1

LpmDetResult_extension1 structure holds an array of additional information for detections in version

7.3 or higher.

The structure contains the following fields:

• detections

An array of additional information for detections.

• extras

General void pointer allocated for future use.

6.2.11 LpmDetection

LpmDetection contains data related to a single license plate or ADR plate detection.

The structure contains the following fields:

• confidence

Plate detection confidence factor.

• position

License plate position.

• label

Detection type label.

• image

The image crop of the detection. Please note that generation of this image can be disabled

in configuration files.

• affine_mapping

Array with affine mapping from plate image coordinates to source image coordinates. The

array contains the first two rows of the affine transformation matrix, saved row-wise.

typedef struct {

 double Confidence;

 LpmBoundingBox Position;

 ERImage Image;

 double AffineMapping[6];

} LpmDetection;

typedef struct {

 double confidence;

 LpmBoundingBox position;

 LpmDetectionLabel label;

 ERImage image;

 double affine_mapping[6];

} LpmDetection;

typedef struct {

 LpmDetection_extension1 *detections;

 void *extras;

} LpmDetResult;

SDK Application Interface 32

6.2.12 LpmDetection_extension1

LpmDetection_extension1 contains additional data related to a single detection in version 7.3 and

higher.

The structure contains the following fields:

• occlusion

Specifies how much the detection is occluded. Negative value - not known, 0.0f - not

occluded, 1.0f - fully occluded.

• truncated

Contains -1 if not known, 0 if the detection is not truncated, 1 if it is truncated (the bbox

does not cover the whole object).

• cluster_id

ID of the cluster, to which this detection belongs. -1 if the cluster is not known, 0 means

undefined, ID starts generally at 1. Detections of objects which are physically connected

have same cluster_id, for example bounding box and license plate of same car will have

same cluster_id.

• cluster_confidence

Confidence factor for cluster_id prediction.

• extras

General void pointer allocated for future use, NULL if not in use.

6.2.13 LpmOcrResult

LpmOcrResult structure holds an array of OCR hypotheses related to a single detection.

The structure contains the following fields:

• lpm_id

ID of the used LPM module.

• lpm_idx

Index of the used LPM module.

• num_hypotheses

Number of OCR-hypotheses.

• hypotheses

Array of OCR-hypotheses.

typedef struct {

 int lpm_id;

 int lpm_idx;

 int num_hypotheses;

 LpmOcrHypothesis *hypotheses;

} LpmOcrResult;

typedef struct {

 float occlusion;
 int truncated;
 int cluster_id;
 double cluster_confidence;
 void *extras;
} LpmDetection_extension1;

SDK Application Interface 33

6.2.14 LpmOcrHypothesis

LpmOcrHypothesis structure holds one OCR hypothesis.

The structure contains the following fields:

• confidence

Confidence factor for the current OCR result.

• num_lines

Number of license/ADR plate text lines.

• text_lines

Array of text lines of type LpmTextLine of the current license/ADR plate.

• plate_type

A NULL-terminated string pointing to international license plate code.

Note: When reading ADR plates, the value is „ADR” or „TRASH“.

Note: If the value is „UNK”, then it was recognized as a false positive detection.

• plate_type_confidence

Confidence for the plate type prediction.

• lp_dimensions

Predicted physical dimensions of the license plate.

• lp_dimensions_confidence

Confidence for the dimensions prediction.

• extras

General void pointer allocated for future use.

6.2.15 LpmLpDimensions

LpmLpDimensions structure holds a physical width and height of a license plate in mm.

The structure contains the following fields:

• physical_width

Physical width of the license plate in mm.

• physical_height

Physical height of the license plate in mm.

typedef struct {

 double confidence;

 unsigned int num_lines;

 LpmTextLine *text_lines;

 char *plate_type;

 double plate_type_confidence;

 LpmLpDimensions lp_dimensions;

 double *lp_dimensions_confidence;

 void *extras;

} LpmOcrHypothesis;

typedef struct {

 unsigned int physical_width;

 unsigned int physical_height;

} LpmLpDimensions;

SDK Application Interface 34

6.2.16 LpmTextLine

LpmTextLine structure holds all data about one line of the license/ADR plate text.

The structure contains the following fields:

• line_confidence

Output confidence for the whole line.

• length

Text length (i.e. number of characters).

• characters

Text in Unicode (UTF-32) of length-many characters.

• characters_confidence

Array of length-many items containing the confidence for each character.

typedef struct {

 double line_confidence;

 unsigned int length;

 int *characters;

 double *characters_confidence

} LpmTextLine;

SDK Application Interface 35

6.3 Functions
This chapter contains information about the LPM library functions present in the public API. The

chapter is divided into four parts. The first part describes the functions for handling the LPM engine,

the second part describes functions for handling the LpmCameraViewParams structure, the third

section describes all functions related to loading/unloading/running LPM modules and the fourth

section describes error logging related functions.

6.3.1 Main LPM engine functions

This part defines the API functions which are designed to initialize the LPM engine and to free the LPM

engine, as well as to get the engine version and compilation date. The functions are: lpmInit(),

lpmFree(), lpmVersion() and lpmCompilationDate(). These functions are declared in the lpm.h file.

lpmInit

Initializes the LPM engine and searches the given directory for installed LPM modules.

Specification:

Inputs:

• lpm_directory

 LPM module base directory (e.g. “../../modules-v[VERSION]/x64”).

• lpm_state

 LPM state structure (LPM context) to be initialized.

Returns:

• 0 on success, non-zero value otherwise

Description:

The function lpmInit() initializes the LPM engine and searches the given directory

(e.g. ../../modules-v7/x64) for installed modules while assigning them unique, zero-based indices.

Assigned indices range from zero to the number of installed modules - 1. Function returns 0 on

success.

Example:

int lpmInit(const char *lpm_directory, LPMState *lpm_state)

LPMState lpm_state;
int ret_code;

if ((ret_code = lpmInit("../../modules-v7/x64", &lpm_state)) != 0)

{

 // error handling

 return -1;

}

// lpm_state can be used here

SDK Application Interface 36

lpmFree

Frees the initialized LPM engine.

Specification:

Inputs:

• lpm_state

The LPM state created by lpmInit() function.

Description:

The function lpmFree() is used for freeing the LPM engine. When the module is not needed anymore,

for example at the end of the program, all underlying structures must be deallocated. The input of the

function call is a pointer to the structure LPMState, which was initialized using the lpmInit() function

during engine initialization.

Example:

lpmVersion

Returns the LPM engine version.

Specification:

Returns:

• LPM engine version.

Description:

The function lpmVersion() returns the version of the LPM engine coded into one unsigned long

integer. The least significant byte stores the subversion number and the second least significant byte

stores the version number.

Example:

void lpmFree(LPMState *lpm_state);

LPMState lpm_state;
lpmInit("../../modules-v6/x64", &lpm_state);

// code using lpm_state

// ...

lpmFree(&lpm_state);

IMPORTANT: Always free the LPM engine when it is not needed anymore, as otherwise your

program will have memory leaks.

unsigned long lpmVersion(void);

unsigned long longversion = lpmVersion();
unsigned char version = (unsigned char)(lpmVersion() >> CHAR_BIT);

unsigned char subversion = (unsigned char)(lpmVersion());

SDK Application Interface 37

lpmCompilationDate

Returns the compilation date of the LPM engine.

Specification:

Returns:

• LPM compilation date.

Description:

The function lpmCompilationDate() returns the compilation date of the LPM engine in Mmm-dd -

yyyy format.

Example:

6.3.2 Camera view configuration functions

This part defines the API functions which are designed for handling the LpmCameraViewParams

structure. The function lpmLoadViewConfig() reads this structure from a file and

lpmWriteViewConfig() writes this structure to a text file. These functions are declared in the lpm.h

file.

lpmLoadViewConfig

Loads the camera view parameters from file.

Specification:

Inputs:

• filename

Path to a file, from which the config should be loaded, or NULL to use default parameters.

• camera_view_params

Structure to be loaded with parameters from a given file.

Returns:

• Zero on success, error code otherwise.

Description:

The function lpmLoadViewConfig() loads camera view parameters from a file specified by the filename

parameter into the parameter camera_view_params. If the parameter filename is NULL, then default

camera view parameters are returned.

Camera view parameters stored in LpmCameraViewParams are used while loading LPM modules by

the lpmLoadModule() function.

int lpmLoadViewConfig(const char *filename, LpmCameraViewParams *camera_view_params)

char const *lpmCompilationDate(void);

char const *compilation_date = lpmCompilationDate();

printf("Compilation date: %s\n", compilation_date);

SDK Application Interface 38

Example:

lpmWriteViewConfig

Writes the camera view parameters to a given file.

Specification:

Inputs:

• filename

Path to the file where camera view parameters will be written.

• camera_view_params

Pointer to LpmCameraViewParams to write.

Returns:

• 0 – File was successfully written.

• other – Error while saving file.

Description:

The function lpmWriteViewConfig() writes the structure LpmCameraViewParams with camera view

parameters to the given file.

Example:

6.3.3 LPM modules handling functions

This part defines the API functions which are designed to handle LPM modules:-to load them, run

them, get information about them and to free them. The function lpmLoadModule() is used to load a

LPM module, lpmFreeModule() to free a module, lpmRunDet() and lpmRunOcr() to run detection and

OCR modules respectively, lpmFreeDetResult() and lpmFreeOcrResult() to free the returned results,

lpmGetNumAvlbModules() to get the number of available LPM modules, lpmGetModuleIndex() and

lpmGetModuleIndexByName() to get the module index by ID or name, lpmGetModuleInfo() to get all

information about modules. These functions are declared in the lpm.h file.

LpmCameraViewParams camera_view_params;

if (lpmLoadViewConfig("config_camera_view.ini", &camera_view_params) != 0)

{

 // Error handling

}

int lpmWriteViewConfig(const char *filename, LpmCameraViewParams camera_view_params);

LpmCameraViewParams cvp;

cvp.view_type = LPM_VIEW_FRONTAL;

cvp.camera_aspect = 1.f;

cvp.min_horizontal_resolution = 175;

cvp.max_horizontal_resolution = 360;

lpmWriteViewConfig("../../modules-v7/config_camera_view.ini", cvp);

IMPORTANT: Camera view parameters do NOT apply when using GPU capable modules which

work in a different way than previous modules.

SDK Application Interface 39

lpmLoadModule

Loads an LPM module with a given index.

Specification:

Inputs:

• lpm_state

The LPM state created by the lpmInit() function.

• module_index

Index of the LPM module you wish to load.

Note that module index and module ID are two different things.

• camera_view_params

Pointer to optional camera view parameters. Use NULL for default parameters.

• module_config

Pointer to optional module configuration parameters. Use NULL to load values from

configuration file.

Returns:

• 0 – the module was successfully initialized.

• other – Error while initializing the module.

Description:

The function lpmLoadModule() initializes the LPM module with the given index. Module functions can

be called after successful initialization. The LPM layer allows the user to activate and work with

multiple modules simultaneously. The appropriate module index can be retrieved from the module ID

and version using the lpmGetModuleIndex() function or the lpmGetModuleIndexByName() function,

if the module name is known. The third parameter with camera view config is optional - pass in NULL

to use default values. The fourth parameter with module config is also optional, pass in NULL to load

the values from the module-specific configuration file.

Example:

int lpmLoadModule(LPMState lpm_state, int module_index,
 LpmCameraViewParams *camera_view_params,
 const LpmModuleConfig *module_config)

int idx = 1;

LpmCameraViewParams camera_view_params;
// Initialize camera_view_params here...

LpmModuleConfig module_config;
// Initialize module_config here...

if (lpmLoadModule(lpm_state, idx, &camera_view_params, &module_config) != 0)

{

 // Error handling

}

// Use module functions here

IMPORTANT: Always free the LPM module when it is not needed anymore using lpmFreeModule(),

otherwise your program will have memory leaks.

SDK Application Interface 40

lpmFreeModule

Frees previously loaded LPM module with the given index.

Specification:

Inputs:

• lpm_state

The LPM state created by the lpmInit() function.

• module_index

Index of the LPM module to free.

Description:

The function lpmFreeModule() frees the previously loaded LPM module.

Example:

lpmRunDet

Runs license/ADR plate detection on the given image.

Specification:

Inputs:

• lpm_state

The LPM state created by lpmInit() function.

• module_index

Index of LPM module to use.

Note that module index and module ID are two different things.

• image

ERImage structure containing the input image for detection.

• bounding_box

The bounding box of a detection area. When calling this function, the bounding box is

treated as an axis aligned bounding box, so it is sufficient to only fill in the top left and

bottom right row-column values.

Returns:

• NULL – Error during computation occurred.

• other – LpmDetResult structure with all detections.

Description:

The function lpmRunDet() runs LPM detection module specified by module index idx on supplied

image. Scanning area is specified by LpmBoundingBox structure. For a more detailed example, see the

License/ADR plates detection part in the Examples section.

void lpmFreeModule(LPMState lpm_state, int module_index)

lpmLoadModule(lpm_state, idx, NULL, NULL); // Init module

// Use module here

// ...

lpmFreeModule(lpm_state, idx); // Free module

LpmDetResult *lpmRunDet(LPMState lpm_state, int module_index,
 ERImage image, const LpmBoundingBox *bounding_box)

SDK Application Interface 41

Example:

lpmFreeDetResult

Frees detection result structure generated by lpmRunDet().

Specification:

Inputs:

• lpm_state

The LPM state created by lpmInit() function.

• detection_result

Pointer to the detection result structure to be freed.

Description:

The function lpmFreeDetResult() frees the detection result structure generated by lpmRunDet().

Example:

lpmRunOcr

Runs OCR on the given image.

Specification:

LpmBoundingBox bb; // Variable holding bounding box of detector area

bb.top_left_col = 0;

bb.top_left_row = 0;

bb.bot_right_col = er_image.width - 1;

bb.bot_right_row = er_image.height - 1;

LpmDetResult *det_result = NULL; // A pointer to the detection result structure

if ((det_result = lpmRunDet(lpm_state, idx, er_image, &bb)) == NULL) // Run detection

{

 // Error handling

}

// Working with result

void lpmFreeDetResult(LPMState lpm_state, LpmDetResult *detection_result)

LpmDetResult *det_result = lpmRunDet(lpm_state, idx, er_image, &bb); // Run detection

// Working with the result

// ...

lpmFreeDetResult(lpm_state, det_result); // Free detection result

LpmOcrResult *lpmRunOcr(LPMState lpm_state, int module_index,
 ERImage image, const LpmBoundingBox *detection_position,
 LpmDetectionLabel detection_label);

IMPORTANT: Always free the structure with the detection result when it is not needed anymore

using lpmFreeDetResult(), otherwise your program will have memory leaks.

IMPORTANT: With new GPU capable detection models, size and aspect ratio of bounding box can

affect detection performance. Be careful when using very wide or very high bounding boxes.

SDK Application Interface 42

Inputs:

• lpm_state

The LPM state created by lpmInit().

• module_index

Index of the LPM module to use.

Note that module index and module ID are two different things.

• image

ERImage structure containing the input image.

• detection_position

The 4-point position result of the detection.

• detection_label

The detection label specifying the type of detection; can be obtained from the LpmDetection

structure if using the lpmRunDet() function.

Returns:

• NULL – Error during computation occurred.

• other – LpmOcrResult structure with all detections.

Description:

The function lpmRunOcr() runs OCR on a supplied image. The detection area is specified by the

LpmBoundingBox structure and the detection label by the LpmDetectionLabel structure. Usually, the

bounding box and detection label are supplied to the OCR function from the detection output.

Example:

lpmFreeOcrResult

Frees the detection result structure generated by lpmRunOcr().

Specification:

Inputs:

• lpm_state

The LPM state created by the lpmInit() function.

• ocr_result

Pointer to the OCR result structure to be freed.

Description:

The function lpmFreeOcrResult() frees the detection result structure generated by lpmRunOcr().

void lpmFreeOcrResult(LPMState lpm_state, LpmOcrResult *ocr_result);

LpmOcrResult *ocr_result = NULL; // A pointer to the OCR result structure

if ((ocr_result = lpmRunOcr(lpm_state, idx, er_image,

 &(det_result->detections[j].position),

 det_result->detections[j].label)) != NULL)

{

 // Error handling

}

// Working with the result

IMPORTANT: Always free the structure with the OCR result when it is not needed anymore using

lpmFreeOcrResult, otherwise your program will have memory leaks.

SDK Application Interface 43

Example:

lpmGetNumAvlbModules

Gets the number of available LPM modules.

Specification:

Inputs:

• lpm_state

The LPM state created by the lpmInit() function.

Returns:

• -1 – Error during computation occurred.

• other – Number of LPM modules.

Description:

The function lpmGetNumAvlbModules() returns the number of available LPM modules.

Example:

lpmGetModuleIndex

Gets the LPM module index (handle) from the module ID and its version.

Specification:

Inputs:

• lpm_state

The LPM state created by the lpmInit() function.

• module_id

ID of the module.

• version

Version of the module.

• subversion

Subversion of the module.

Returns:

• -1 – Error during computation occurred.

• other – Module index.

Description:

LpmOcrResult *ocr_result; // A pointer to the OCR result structure

if ((ocr_result = lpmRunOcr(lpm_state, idx, er_image,

 &(det_result->detections[j].position),

 det_result->detections[j].label)) != NULL)

{

 // Error handling

}

// Working with the result

lpmFreeOcrResult(lpm_state, ocr_result); // Free OCR result

int lpmGetNumAvlbModules(LPMState lpm_state);

int num_available_modules = lpmGetNumAvlbModules(lpm_state);

int lpmGetModuleIndex(LPMState lpm_state, int module_id,
 int version, int subversion);

SDK Application Interface 44

The function lpmGetModuleIndex() returns the LPM module index (handle) from the module ID and

its version. Module indices can vary with each program execution because they depend on the search

order of the given module directory. Set the version and subversion to zero to get the index of the

latest available module with the provided ID.

Example:

lpmGetModuleIndexByName

Gets the LPM module index (handle) from the module name.

Specification:

Inputs:

• lpm_state

The LPM state created by the lpmInit() function.

• module_name

Name of the given module. See lpmGetModuleInfo().

Returns:

• -1 – Error during computation occurred.

• other – Module index.

Description:

The function lpmGetModuleIndexByName() returns the LPM module index (handle) from the module

name. Module indices can vary with each program execution because they depend on the search

order of the given module directory.

Example:

lpmGetModuleInfo

Retrieves information about the LPM module.

Specification:

int idx = -1;

if ((idx = lpmGetModuleIndex(lpm_state, MODULE_ID, 0, 0)) == -1)

{

 // Error handling

}

// Working with the idx

int lpmGetModuleIndexByName(LPMState lpm_state, const char *module_name);

int idx = -1;

if ((idx = lpmGetModuleIndexByName(lpm_state, "001-frontal.adr-adr-v7.0")) == -1)
{

 // Error handling

}

// Working with the idx

LpmModuleInfo *lpmGetModuleInfo(LPMState lpm_state, int module_index);

SDK Application Interface 45

Inputs:

• lpm_state

The LPM state created by the lpmInit() function.

• module_index

Index of the LPM module to use.

Note that module index and module ID are two different things.

Returns:

• NULL – Error during computation occurred. Call lpmGetLastError() to get error code.

• other – LpmModuleInfo structure with all information about the module.

Description:

The function lpmGetModuleInfo() returns all information about the module with the desired index.

Example:

6.3.4 Error logging functions

This part defines the API functions which are designed for error logging and easier debugging.

The lpmGetLastError() function returns the error code of the last error. These functions are defined in

the lpm.h file.

lpmGetLastError

Gets the code of the last occurred error.

Specification:

Returns:

• The ID of the last occurred error.

Description:

The function lpmGetLastError() returns the error code of the last error.

Example:

int idx = 1;

LpmModuleInfo *lmi = lpmGetModuleInfo(lpm_state, idx);

// Each module has its own ID and this is a way how to get it.

printf(" Module ID: %d\n", lmi->id);

// Another module properties ...

printf(" Module name: %s\n", lmi->name);

printf(" Module path: %s\n", lmi->path);

printf(" Module date: %s\n", lmi->date);

printf(" Module version: %d.%d\n\n", lmi->version, lmi->subversion);

int lpmGetLastError(void)

int err_code lpmGetLastError();

Examples 46

7 Examples
This chapter describes the example which is contained in the SDK package. The example is used to

demonstrate the functionality of the SDK. The source code is included in the package and is described

in detail.

7.1 LPM SDK Example
The LPM SDK package contains an example which is used to demonstrate the basic functionality of the

LPM SDK on several input images. The example detects license/ADR plates on multiple images and

runs OCR on these detections. It also demonstrates how to load LPM modules and get information

about the available modules. This chapter describes in detail the example together with references to

important parts of this document.

The example is in the folder [LPM_SDK]/examples/example-anpr-implink/. The folder contains all

source code and files needed for building the example. In Windows packages, aa Visual Studio 2019

project is included; in Linux packages, a Makefile is included.

7.1.1 Initialization of the LPM engine

The first thing to do is initializing the LPM engine using the lpmInit() function. The parameters of this

function are the directory where the LPM modules are located (e. g. ../../modules-v7/x64 for default

package directory structure on Windows x64 system), and a LpmState pointer.

After successful initialization of the engine, modules can be loaded, and the engine can be used.

#define MODULES_DIR "../../modules-v7/x64"

LpmState lpm_state; // A void pointer to the lpm state variable

int ret_code;
if ((ret_code = lpmInit(MODULES_DIR, &lpm_state)) != 0)

{

 // Error handling

}

printf("LPM v%u.%u initialized.\n\n", (unsigned char)(lpmVersion() >> CHAR_BIT),

 (unsigned char)(lpmVersion()));

Examples 47

7.1.2 Listing of available LPM modules

To start working with LPM modules, their indexes are needed as handles. Indexes are numbers from

zero to the number of available modules -1. Code bellow illustrates how to get the number of

modules and list information about them:

7.1.3 Writing camera view parameters

Another part of the example concerns writing camera view parameters (image resolution, aspect ratio,

…) to a file which can be then loaded and used to supply these parameters when loading modules. See

the LpmCameraViewParams structure for more information about these parameters.

7.1.4 Loading camera view parameters

Camera view parameters can be loaded from a config file in the following way:

LpmModuleInfo *module_info = NULL; // A pointer to the module info structure

// Get the number of available lpm modules and print some basic information about them

int num_available_modules = lpmGetNumAvlbModules(lpm_state);

printf("Listing %d modules:\n", num_available_modules);

for (int i = 0; i < num_available_modules; i++)

{

 module_info = lpmGetModuleInfo(lpm_state, i);

 // Each module has its own ID and this is a way how to get it

 printf(" Module ID : %d\n", module_info->id);

 // Module name, version, date and others are available as defined in LpmModuleInfo

 printf(" Module name : %s\n", module_info->name);

 printf(" Module path : %s\n", module_info->path);

 printf(" Module date : %s\n", module_info->date);

 printf(" Module version: %d.%d\n\n", module_info->version, module_info->subversion);

}

LpmCameraViewParams camera_view_params;

camera_view_params.view_type = LPM_VIEW_FRONTAL;

camera_view_params.camera_aspect = 1.f;

camera_view_params.min_horizontal_resolution = 135;

camera_view_params.max_horizontal_resolution = 260;

lpmWriteViewConfig(VIEW_CONFIG_FILENAME, camera_view_params);

// Load the camera view parameters from config file

LpmCameraViewParams camera_view_params;

if (lpmLoadViewConfig(VIEW_CONFIG_FILENAME, &camera_view_params) != 0)
{
 // Error handling

}

IMPORTANT: camera view parameters do NOT apply when using the new GPU capable detection

modules which work in a different way than the previous modules.

Examples 48

7.1.5 Getting LPM module index

To be able to load the appropriate module, the index of the module must be known. If the module id

is known, then the easiest way to get this index is to use the function lpmGetModuleIndex(). If the

version and subversion of the module is specified, then the function looks for the specified version;

otherwise the function searches for all versions of the module with the specified ID and returns the

latest version.

7.1.6 Setting module configuration parameters

A module can be initialized with special configuration parameters.

For versions prior to 7.3 you can set the parameters to allow GPU computation or pass in a NULL

pointer to use default values from the configuration file. We will set them to select computation on

CPU:

For version 7.3 and higher settings are provided by an extension structure:

7.1.7 Loading LPM module

When the index of the desired module is known, the module can be loaded using the function

lpmLoadModule(). The third parameter containing camera view parameters is optional, NULL value

can be used to use default parameters from config file.

One or more LPM modules can be loaded at one time simply by calling lpmLoadModule() multiple

times. Module used by SDK functions is then specified by module_index parameter.

// Check if a module with a given MODULE_ID is available and if so then return its index (handle).

int idx; // Module index (handle)

if ((idx = lpmGetModuleIndex(lpm_state, MODULE_ID, 0, 0)) == -1)

{

 // Error handling, module not found

}

// Now load the module.

if (lpmLoadModule(lpm_state, idx, &camera_view_params, &lpm_module_config) != 0)

{

 // Error handling

}

LpmModuleConfig lpm_module_config;

lpm_module_config.compute_on_gpu = 0;

lpm_module_config.gpu_device_id = 0;

lpm_module_config.extras = NULL; // always set this to NULL if not used!

 LpmModuleConfig_extension1 lpm_module_config_extension1;

 memset(&lpm_module_config_extension1, 0, sizeof(lpm_module_config_extension1));

 lpm_module_config_extension1.lpm_config_filename = "config.ini";

 lpm_module_config_extension1.ocr_compute_on_gpu = 1;

 lpm_module_config_extension1.det_config_filename = "config-det.ini";

 lpm_module_config_extension1.det_compute_on_gpu = 1;

 lpm_module_config.extras = &lpm_module_config_extension1;

Examples 49

7.1.8 Input image loading

Before a LPM module can be used, image data must be loaded and decoded to a supported image

format The example uses the Eyedea Recognition’s custom image structure ERImage to manipulate

the images. The image is loaded to a ERImage structure using the erImageRead() function.

// Create the ERImage.

ERImage image;

// Read the input image

int image_read_code = erImageRead(&image, IMAGE_FILENAME);

// Check whether image was loaded

if (image_read_code != 0)

{

 // Handle errors

}

Examples 50

7.1.9 License/ADR plates detection

Code bellow illustrate how to run a license/ADR plates detection procedure on multiple files. Image

files are loaded into ERImage structures and a bounding box covering the whole image is supplied to

the detection function by a LpmBoundingBox structure. At the end, the structure with the detection

result is deleted using the lpmFreeDetResult() function.

#define NUM_IMG 3

const char TestImageList[NUM_IMG][_MAX_PATH] = { "../images/1.jpg", "../images/2.jpg",

 "../images/3.jpg"}; // images to process

LpmDetResult *det_result = NULL; // A pointer to the detection result structure

for (int i = 0; i < NUM_IMG; i++) // Cycle through the images

{

 ERImage er_image;

 if (erImageRead(&er_image, TestImageList[i]) != 0)

 {

 // Error handling

 }

 // Specify an area of the input image where detection will be performed

 LpmBoundingBox bb;

 bb.top_left_col = 0;

 bb.top_left_row = 0;

 bb.bot_right_col = er_image.width - 1;

 bb.bot_right_row = er_image.height - 1;

 // Run LP detection

 if ((det_result = lpmRunDet(lpm_state, idx, er_image, &bb)) == NULL)

 {

 // Error handling

 }

 // Print information about the detection

#ifdef LPM_EXTENSIONS_v7_3

 if (det_result->extras != NULL)

 {

 LpmDetection_extension1 &detection_extension1 = det_result->extras->detections[j];

 printf(" - Detection %d, confidence %.2f, truncated %d, occlusion %.2f, cluster_id

%d:\n", j + 1,

 detection.confidence,

 detection_extension1.truncated,

 detection_extension1.occlusion,

 detection_extension1.cluster_id);

 }

 else

 {

#endif

 printf(" - Detection %d, confidence %.2f:\n", j + 1, detection.confidence);

#ifdef LPM_EXTENSIONS_v7_3

 }

#endif

 // Do OCR or other stuff with detections

 // ...

 lpmFreeDetResult(lpm_state, det_result); // Free memory with detection results

}

Examples 51

7.1.10 Printing detection information

This code illustrates how to print detection information. In version 7.3 and higher, additional

information is stored in an extension structure, and printing of this information is enabled by a

preprocessor directive and by checking for NULL.

// ...

// Print information about the detection

#ifdef LPM_EXTENSIONS_v7_3

if (det_result->extras != NULL)

{

 LpmDetection_extension1 &detection_extension1 = det_result->extras->detections[j];

 printf(" - Detection %d, confidence %.2f, truncated %d, occlusion %.2f, cluster_id %d:\n",

 j + 1,

 detection.confidence,

 detection_extension1.truncated,

 detection_extension1.occlusion,

 detection_extension1.cluster_id);

}

else

{

#endif

 printf(" - Detection %d, confidence %.2f:\n", j + 1, detection.confidence);

#ifdef LPM_EXTENSIONS_v7_3

}

#endif

// Do OCR or other stuff with detections

// ...

Examples 52

7.1.11 License/ADR plate OCR

When license/ADR plates are detected, OCR is called on every plate detection. More hypotheses can

be returned for each plate, together with their confidences. Bounding boxes of plate detections are

supplied directly to lpmRunOcr() function along with the original image. In version 7.3 and higher,

detection results contain an extension structure which holds additional information. At the end, the

structure with the OCR result is deleted using the lpmFreeOcrResult() function.

7.1.12 Cleaning up

At the end, when you are done working with the LPM SDK instance(for example at the end of the

program), it must be deleted together with all the loaded modules and camera view parameters

structures. To delete these, use the API functions lpmFreeModule() and lpmFree(), which are designed

for this purpose.

// Running OCR on each LP detection

LpmOcrResult *ocr_result = NULL; // A pointer to the OCR result structure

for (int j = 0; j < det_result->num_detections; j++)

{

 printf(" - Detection %d:\n", j + 1);

 if ((ocr_result = lpmRunOcr(lpm_state, idx, er_image,

 &(det_result->detections[j].position), det_result->detections[j].label)) != NULL)

 {

 // We take the first OCR hypothesis.

 LpmOcrHypothesis &hypothesis = ocr_result->hypotheses[0];

 printf(" - Ilpc: %s, confidence: %.2f\n", hypothesis.plate_type, hypothesis.confidence);

 printf(" - dimensions: w*h=%d*%d[mm], confidence: %.2f\n",
 hypothesis.lp_dimensions.physical_width, hypothesis.lp_dimensions.physical_height,
 hypothesis.lp_dimensions_confidence);

 // Print all the lines contained in the hypothesis

 for (unsigned int k = 0; k < hypothesis.num_lines; k++)
 {
 // Note that the prediction can contain non-ASCII characters
 printf(" - line %d, ASCII: '", k + 1);
 for (unsigned int l = 0; l < hypothesis.text_lines[k].length; l++)
 {
 printf("%c", hypothesis.text_lines[k].characters[l]);
 }
 printf("', Unicode: ");
 for (unsigned int l = 0; l < hypothesis.text_lines[k].length; l++)
 {
 printf("0x%X ", hypothesis.text_lines[k].characters[l]);
 }
 printf(", length %d, confidence %.2f\n", hypothesis.text_lines[k].length,
 hypothesis.text_lines[k].line_confidence);
 }
 // Empty LP/ADR table can be recognized using predicted number of lines
 if (hypothesis.num_lines == 0)
 {
 printf(" - empty\n");
 }

 printf("\n");

 }

 lpmFreeOcrResult(lpm_state, ocr_result);

}

// Finish work with the current module

lpmFreeModule(lpm_state, idx);

// Free the LPM state

lpmFree(&lpm_state);

Modules configuration files 53

8 Modules configuration files
This chapter describes configuration files used by the SDK modules for some of the configuration. The

SDK uses multiple configuration files, this chapter will cover two main configuration files.

Configuration files use an INI style key-value pair format, and the files are divided into multiple

sections. Each section starts with a name enclosed in square brackets, and can contain multiple key-

value pairs, each on a new line. Key-value pairs are in the parameter_name=parameter_value

format. Values can be numbers, strings enclosed in quotation marks or True or False for Boolean

values. Comments can be written after the # sign.

The first part of this chapter describes the General configuration file config.ini, and the second part

describes the Detector configuration file config-det.ini. In some configurations, LPM may also use

other configuration files, which are not described in this chapter.

Some settings can be set in multiple ways - either via a configuration file, or by passing a configuration

structure to an SDK function. Values in the detector configuration file config-det.ini have the lowest

priority and are overwritten by values in the general configuration file config.ini. Values passed to the

module initialization function lpmLoadModule() in LpmModuleConfig and

LpmModuleConfig_extension1 structures have the highest priority and will overwrite the settings in

configuration files.

8.1 General configuration file config.ini
This is the main configuration file, and values from this file will overwrite values from the detector

config file config-det.ini. Some of these values can be overwritten by LpmModuleConfig and

LpmModuleConfig_extension1 structures passed to lpmLoadModule(). config-det.ini contains the

following sections:

8.1.1 EYEDENTIFY PARAMETERS

These are the parameters used prior to version 7.3, which are now deprecated. In version 7.3 and

higher, please use OCR PARAMETERS and DET PARAMETERS instead.

This section contains the following parameters:

edf_compute_on_gpu

Boolean (True/False) value whether to use GPU for detection and OCR.

edf_gpu_device_id

GPU id of the device to be used for computation if GPU computation is enabled.

Example:

[EYEDENTIFY PARAMETERS]
edf_compute_on_gpu = False
edf_gpu_device_id = 0

Modules configuration files 54

8.1.2 OCR PARAMETERS

Parameters for the OCR part of the SDK:

ocr_compute_on_gpu

Boolean (True/False) value whether to use GPU for OCR.

ocr_gpu_device_id

 GPU id of device to be used for OCR computation if OCR computation on GPU is enabled.

ocr_num_threads

Number of threads for OCR computation. The value 0, used by default, corresponds to 90%

of your logical processors. Be careful when setting high values, because setting this value to

or above the number of your logical processors may block all other processes, including the

system processes used by the SDK.

disable_ocr

Setting this to True will disable OCR computation. Trying to run the OCR function will return

NULL and a warning will be printed to standard output.

Example:

8.1.3 OCR MODELS

This section deals with setting which OCR model is to be used, depending on the label of each

detection of the detection output.

model[n]

Definition of labels for each model file. For each model, the definition should look like

model[number]=model_dat_file,label1,label2,…

where model_dat_file is the filename of the model dat file, and label1, label2,… are the

detector label numbers for which this OCR model will be used. The model with no attached

labels acts as the default model, and is used for detection labels that are not explicitly

attached to any model declared in this section. The models numbering [n] in model[n] is not

important. Labels are defined in structure LpmDetectionLabel in file lpm_type.h

Example:

[OCR PARAMETERS]
ocr_compute_on_gpu = False
ocr_gpu_device_id = 0
ocr_num_threads = 0
disable_ocr = False

[OCR MODELS]
model1 = CNN_ANPRTF2LITE_EU_GRAY_96x24_NONE_LIN_EXP07_enc.dat
model2 = CNN_ANPRTF2LITE_ML_GRAY_64x40_NONE_LIN_EXP05_enc.dat,1002,1102,2000,2001,2002,2100

Modules configuration files 55

8.1.4 DET PARAMETERS

This section contains parameters for the detector:

det_config_filename

Filename of the detector configuration file relative to the directory of the general

configuration file. Default is config-det.ini.

det_compute_on_gpu

Boolean (True/False) value whether to run the detector on GPU.

det_gpu_device_id

GPU id of the device to be used for detection computation if detection computation on GPU

is enabled.

det_num_threads

Number of threads for detection computation. The value 0, used by default, corresponds to

90% of your logical processors. Be careful when setting high values, because setting this

value to or above the number of your logical processors may block all other processes,

including the system processes used by the SDK.

disable_det

Setting this to True will disable the detector. Trying to run the detector function lpmRunDet()

will return NULL and a warning will be printed to standard output.

Example:

[DET PARAMETERS]
det_config_filename = "config-det.ini"
det_compute_on_gpu = False
det_gpu_device_id = 0
det_num_threads = 0
disable_det = False

Modules configuration files 56

8.1.5 LPIMAGE CROP PARAMETERS

This section contains parameters for generating image crops from detection outputs:

lp_crop_enabled

This Boolean value controls whether an image crop should be generated from detections. If

set to True, an image crop will be generated and accessible via LpmDetection.image. Set to

False for speed optimization if you do not need image crops for your own purposes.

lp_img_width

 Width of the cropped image in pixels. Must be greater than zero.

lp_img_height

Height of cropped image in pixels. Set to 0 for automatic calculation of height according to

crop width and detection aspect ratio.

Example:

[LPIMAGE CROP PARAMETERS]
lp_crop_enabled = True
lp_img_width = 256
lp_img_height = 0

Modules configuration files 57

8.2 Detector configuration file config-det.ini
This is the configuration file of the detector. Most of the values in this file are primarily for internal

use and are not to be modified. Please be careful when changing the values in this file. The file

contains the following sections:

8.2.1 MODULE

This section stores data about the module and some of its settings:

type

Type of the detector module. Can specify multiple types, in which case if the initialization of

the first type fails, the SDK will try to initialize the next module. This setting can be used to

try to initialize the GPU version, and if this fails (for example if some GPU libraries are

missing), the CPU version is initialized instead.

name

 Name of the module used internally.

group

Name of preprocessed image used internally.

num_threads

Number of threads for detection computation. The value 0, used by default, corresponds to

90% of your logical processors. Be careful when setting high values, because setting this

value to or above the number of your logical processors may block all other processes,

including the system processes used by the SDK.

gpu_device_id

GPU id of the device to use for detection computation if detection computation on GPU is

enabled.

use_gpu

Boolean (True/False) value whether to use GPU for detection computation.

Example:

[MODULE]
type = "Tf2Lite-GPU,Tf2Lite"
name = "Tf2lite-CNN"
group = "Tf2lite-lp-eu-rgb-608x416"
num_threads = 0
gpu_device_id = 0
use_gpu = 0

Modules configuration files 58

8.2.2 NMS PARAMETERS

These are parameters for non-maximum suppression which is used to filter out duplicated

detections:

overlap

 Minimal overlap to apply NMS.

nms

Number defining the type of non-maximum suppression to use:

0 - no-nms, 1 - simple nms, 2 - nms+, 3 - nms+ suppress-nested

labels

Number defining how NMS deals with detections with different labels:

0 – ignore labels, 1 – separate NMS for each label.

threshold

 Final threshold on the score.

Example:

8.2.3 DETECTION MODELS

This section contains parameters defining model .dat files:

model_filename

 Path of the model .dat file relative to the detector config.

Example:

[NMS PARAMETERS]
overlap = 0.5
nms = 1
labels = 0
threshold = 0.2

[DETECTION MODELS]
model_filename="models/CNN_DETECTTF2LITE_LP_EU_BGR_608x416_NONE_NONE_EXP22_enc.dat"

Modules configuration files 59

8.2.4 ROI

This section contains parameters which can set the region of interest for the detector. The detector

will only run on the region of interest rectangle defined by:

x

 X position of the top left corner of the region of interest.

y

 Y position of the top left corner of the region of interest.

width

 Width of the region of interest in pixels.

height

 Height of the region of interest in pixels.

Example:

8.2.5 PADDING

This section contains parameters used to add padding to the input image. This can be used for some

types of detectors to allow detection at the edges of images:

padding

Four numbers enclosed in square brackets specifying the padding size on each side of the

image in the order of left, top, right, bottom.

Example:

[LPIMAGE CROP PARAMETERS]
x = 200

y = 200

width = 1200

height= 500

[LPIMAGE CROP PARAMETERS]
padding = "[100, 100, 0, 0]"

LPM SDK Licensing 60

9 LPM SDK Licensing
LPM SDK uses the third-party framework developed by Thales for software protection and licensing.

The SDK is protected against reverse engineering and unlicensed execution using hardware USB keys.

The SDK cannot be used without a USB license key with a valid license.

9.1 License Key Types
The SDK allows loading a license using various hardware key types which are listed in the following

table. The keys differ by the number of licenses they can contain (Pro and Max versions), by physical

dimensions, ability to contain time-limited licenses (Time versions) and ability to distribute licenses

over the network (Net versions).

SKU Product SKU Product

SH-PRO Sentinel HL Pro

SH-BRD
Sentinel HL Max
(Board form factor)

SH-MAX Sentinel HL Max

SH-TIM Sentinel HL Time

SH-MIC
Sentinel HL Max
(Micro form factor)

SH-NET Sentinel HL Net

SH-CHP
Sentinel HL Max
(Chip form factor)

SH-NTT Sentinel HL NetTime

9.2 Licenses Overview
Several licenses are available for the LPM SDK. The licenses differ in the type of the binary models

which can be loaded, the time period for which the license is valid, and the number of allowed function

executions.

9.2.1 Perpetual License

A perpetual license is the least restrictive license available. It allows the user to use the license in one

instance for unlimited time and unlimited number of executions. This license type is used for products

which will be deployed to the end-user.

9.2.2 Time-Limited License

A time-limited license allows to set a restriction on the time for which the license is valid. The license

validity end date or the number of the days for which the license is valid after the first use can be set.

This license can be set on Time keys only (see License Key Types). This type of license is used mainly in

the Developer package.

LPM SDK Licensing 61

9.2.3 Execution Counting

An execution counting license allows counting the number of times the license was logged in. The SDK

is designed in such a way that it logs in the license every time a detection or OCR function is called. It

allows limiting the number of executions with the license. This type of license is used mainly in the

Developer package.

9.3 License Management
The license protection software provides a web interface for license management. The web interface

can be found on the address http://localhost:1947 opened in the common web browser. It allows the

user to list the connected license keys, see the details of the arbitrary license key, update the license,

and several other functions.

9.3.1 Connected License Keys

The list of license keys currently plugged in the computer is available at

http://localhost:1947/_int_/devices.html. The list contains basic information about each key,

including the location of the key (Local or IP/name of the remote machine), Vendor ID, Key ID, Key

Type, Configuration, Version and the number of connected Sessions. For each key, it is possible to list

the contained license products, features and sessions using the buttons Products, Features and

Sessions. For easy identification, the USB key LED can be blinked using the Blink On button in the

Actions column. The unique key identification file can be downloaded using the C2V button.

Illustration 2: Web interface with list of plugged keys on http://localhost:1947/_int_/devices.html

9.3.2 License Key Details

Detailed information about a key can be acquired by clicking on the Features button in the Connected

License Keys list or at http://localhost:1947/_int_/features.html?haspid=KEYID, where the KEYID is the

ID of the key. The web page contains information about the licenses contained on the key. The set of

http://localhost:1947/
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/devices.html
http://localhost:1947/_int_/features.html?haspid=KEYID

LPM SDK Licensing 62

all the features represents the whole license. Each Feature controls a different part of the SDK

workflow (initialization, binary model selection, descriptor computation, …).

Illustration 3: Web interface with key 517285691
details on http://localhost:1947/_int_/features.html?haspid=517285691

http://localhost:1947/_int_/features.html?haspid=0123456789

LPM SDK Licensing 63

9.4 License Update
The license can be updated using a special *.v2c file, which is emitted by the licensor of the software.

The license update file is generated for a specific license key ID and only that key can be updated using

the file. There are two ways of updating the license: Web Interface and Command Line.

The license update must be done on the computer where the protection software supplied with the

SDK package is installed. For more information about the protection software installation see

the chapter Installation Guide.

9.4.1 Web Interface

The first option allows the user to update the license using the web interface of the license

management software Sentinel Admin Control Center. The web interface which can be opened in all

modern browsers is located at http://localhost:1947/_int_/checkin.html.

Illustration 4: Web interface for license update on http://localhost:1947/_int_/checkin.html

How to update the license:

1. Open the link http://localhost:1947/_int_/checkin.html in the web browser.

2. Click on the Select File button and select the *.v2c file which you want to use for the update.

3. Click on the Apply File button.

4. A webpage with the result of the license update is shown.

IMPORTANT:

The hardware protection key dongle with the license to be updated needs to be connected to

the machine where the license update will be applied.

http://localhost:1947/_int_/checkin.html
http://localhost:1947/_int_/checkin.html
http://localhost:1947/_int_/checkin.html

LPM SDK Licensing 64

9.4.2 Command Line

The second method of updating the license is by using the Windows command line or a Linux console.

This approach can be very useful when applying the update remotely or on many devices. It is also

suitable for automating the license update procedure. This option requires basic knowledge of the

Windows command line or some Linux console. The license update file *.v2c is applied using the

hasp_update utility from the folder hasp/ located in the corresponding SDK package root.

Windows command line

Run the hasp_update utility with following parameter and the *.v2c file path on the selected machine:

C:\product\hasp> ./hasp_update u /path/to/v2c/license.v2c

If the command runs without any errors, the license has been updated successfully.

Linux console

Run the hasp_update utility with following parameter and the *.v2c file path on the selected machine:

eyedea@eyepc:~/product/hasp$./hasp_update u /path/to/v2c/license.v2c

If the command runs without any errors, the license has been updated successfully.

Third Party Software 65

10 Third Party Software
The LPM SDK uses third party software libraries in accordance with their licenses. The licenses can be

found under [LPMSDK]/documentation/3rdparty-licenses.

Here is a complete list of all libraries used, in alphabetical order:

• Boost

• Iniparser

• OpenCL

• OpenCV

• OpenSSL

• TensorFlow Lite

• ZLib

The following statements are published to fulfill the license terms of the respective libraries:

"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit

(http://www.openssl.org/)."

	1 Product Description
	1.1 Technical Details
	1.2 System Workflow

	2 Distribution Contents
	3 Installation Guide
	3.1 Pre-installation
	3.2 Sentinel LDK Installation
	3.2.1 Windows
	3.2.2 Linux

	3.3 Verification of Installation
	3.4 Installation Failures
	3.5 Managing Licenses
	3.6 License Error Codes

	4 Using TensorRT
	4.1 About
	4.2 edftrt_dat_encoder example

	5 ERImage Application Interface
	5.1 Image Format
	5.1.1 BGR
	5.1.2 Gray
	5.1.3 YCbCr I420
	5.1.4 BGRA
	5.1.5 YCbCr NV12

	5.2 Application Interface
	5.2.1 Enumerators
	ERImageColorModel
	ERImageDataType

	5.2.2 Structures
	ERImage

	5.2.3 Functions
	erImageAllocate
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	erImageAllocateBlank
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	erImageAllocateAndWrap
	Specification:
	Returns:
	Description:
	Example:

	erImageCopy
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	erImageGetDataTypeSize
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	erImageGetColorModelNumChannels
	Specification:
	Inputs:
	Description:
	Example:

	erImageGetPixelDepth
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	erVersion
	Specification:
	Returns:
	Description:
	Example:

	erImageRead
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	erImageWrite
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	erImageFree
	Specification:
	Inputs:
	Description:
	Example:

	6 SDK Application Interface
	6.1 Enumerators
	LpmViewType
	LpmDetectionLabel

	6.2 Structures
	6.2.1 LpmModuleInfo
	6.2.2 LpmPropertyFlags
	6.2.3 LpmLicenseInfo
	6.2.4 LpmDateTime
	6.2.5 LpmCameraViewParams
	6.2.6 LpmModuleConfig
	6.2.7 LpmModuleConfig_extension1
	6.2.8 LpmBoundingBox
	6.2.9 LpmDetResult
	6.2.10 LpmDetResult_extension1
	6.2.11 LpmDetection
	6.2.12 LpmDetection_extension1
	6.2.13 LpmOcrResult
	6.2.14 LpmOcrHypothesis
	6.2.15 LpmLpDimensions
	6.2.16 LpmTextLine

	6.3 Functions
	6.3.1 Main LPM engine functions
	lpmInit
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	lpmFree
	Specification:
	Inputs:
	Description:
	Example:

	lpmVersion
	Specification:
	Returns:
	Description:
	Example:

	lpmCompilationDate
	Specification:
	Returns:
	Description:
	Example:

	6.3.2 Camera view configuration functions
	lpmLoadViewConfig
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	lpmWriteViewConfig
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	6.3.3 LPM modules handling functions
	lpmLoadModule
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	lpmFreeModule
	Specification:
	Inputs:
	Description:
	Example:

	lpmRunDet
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	lpmFreeDetResult
	Specification:
	Inputs:
	Description:
	Example:

	lpmRunOcr
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	lpmFreeOcrResult
	Specification:
	Inputs:
	Description:
	Example:

	lpmGetNumAvlbModules
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	lpmGetModuleIndex
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	lpmGetModuleIndexByName
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	lpmGetModuleInfo
	Retrieves information about the LPM module.
	Specification:
	Inputs:
	Returns:
	Description:
	Example:

	6.3.4 Error logging functions
	lpmGetLastError
	Gets the code of the last occurred error.
	Specification:
	Returns:
	Description:
	Example:

	7 Examples
	7.1 LPM SDK Example
	7.1.1 Initialization of the LPM engine
	7.1.2 Listing of available LPM modules
	7.1.3 Writing camera view parameters
	7.1.4 Loading camera view parameters
	7.1.5 Getting LPM module index
	7.1.6 Setting module configuration parameters
	7.1.7 Loading LPM module
	7.1.8 Input image loading
	7.1.9 License/ADR plates detection
	7.1.10 Printing detection information
	7.1.11 License/ADR plate OCR
	7.1.12 Cleaning up

	8 Modules configuration files
	8.1 General configuration file config.ini
	8.1.1 EYEDENTIFY PARAMETERS
	edf_compute_on_gpu
	edf_gpu_device_id

	8.1.2 OCR PARAMETERS
	ocr_compute_on_gpu
	ocr_gpu_device_id
	ocr_num_threads
	disable_ocr

	8.1.3 OCR MODELS
	model[n]

	8.1.4 DET PARAMETERS
	det_config_filename
	det_compute_on_gpu
	det_gpu_device_id
	det_num_threads
	disable_det

	8.1.5 LPIMAGE CROP PARAMETERS
	lp_crop_enabled
	lp_img_width
	lp_img_height

	8.2 Detector configuration file config-det.ini
	8.2.1 MODULE
	type
	name
	group
	num_threads
	gpu_device_id
	use_gpu

	8.2.2 NMS PARAMETERS
	overlap
	nms
	labels
	threshold

	8.2.3 DETECTION MODELS
	model_filename

	8.2.4 ROI
	x
	y
	width
	height

	8.2.5 PADDING
	padding

	9 LPM SDK Licensing
	9.1 License Key Types
	9.2 Licenses Overview
	9.2.1 Perpetual License
	9.2.2 Time-Limited License
	9.2.3 Execution Counting

	9.3 License Management
	9.3.1 Connected License Keys
	9.3.2 License Key Details

	9.4 License Update
	9.4.1 Web Interface
	9.4.2 Command Line
	Windows command line
	Linux console

	10 Third Party Software

